organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yasuo Imura, Takatoshi Senju and Jin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-850, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study T = 93 K Mean σ (C–C) = 0.003 Å R factor = 0.051 wR factor = 0.141 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

tert-Butyl 1,4-dioxo-3,6-diphenyl-1,2,4,5-tetrahydropyrrolo[3,4-c]pyrrole-2-carboxylate

The title compound, $C_{23}H_{20}N_2O_4$, is a soluble precursor ('latent pigment') of diketopyrrolopyrrole pigments. The *tert*butoxycarbonyl group is twisted by 78.5 (1)° with respect to the heterocyclic ring system. In the crystal structure, pairs of molecules form centrosymmetric dimers through $N-H\cdots O$ intermolecular hydrogen bonds and are stacked in a herringbone fashion along the *a* axis.

Comment

The title compound, (I), is a soluble precursor ('latent pigment') (Zambounis et al., 1994, 1997) of diketopyrrolopyrrole (DPP), an industrially important red pigment (Herbst & Hunger, 1993). The soluble precursor is prepared by replacing the H atom of the NH group by a tert-butoxycarbonyl (t-BOC) group. Both mono- and disubstituted t-BOC DPPs can be prepared. The former is called mono-BOC DPP while the latter is simply t-BOC DPP. The insoluble parent DPP can then be regenerated by thermal decomposition of the precursor at around 450 K. The present 'latent pigment technology' has recently attracted attention as a versatile and promising technique for the preparation of pigment nanoparticles as well as transparent thin films for electronic and imaging applications. The structure of t-BOC DPP has previously been published (MacLean et al., 2000; Mizuguchi, 2003a,b). The present paper reports the structure of mono-BOC DPP, (I).

The title compound is shown in Fig. 1. The phenyl rings deviate asymmetrically from the heterocyclic system in the same direction by 4.4 (1) (N1/C1/C2/C5/C6 and C7/C8/C9/C10/C11/C12) and 9.3 (1)° (N2/C1/C2/C3/C4 and C13/C14/C15/C16/C17/C18). The *t*-BOC group attached to the N atom of the heterocyclic ring is twisted with respect to the heterocyclic system by 78.5 (1)° (N2/C1/C2/C3/C4 and O3/O4/C19/C20). Furthermore, the heterocyclic ring system is not entirely planar, but is folded in the middle with a dihedral angle of 177.6 (1)° between the two five-membered rings. Fig. 2 shows

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 21 February 2005

Accepted 23 February 2005

Online 4 March 2005

Figure 1

A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms.

Figure 2

Projection on to the bc plane, showing the N-H···O intermolecular hydrogen bonds as dotted lines. H atoms not involved in hydrogen bonding have been omitted.

the projection of the structure on to the bc plane. In the crystal structure, pairs of molecules form centrosymmetric dimers through N-H···O intermolecular hydrogen bonds between the NH group of one molecule and the carbonyl group of a neighboring molecule. However, as shown in Fig. 3, there is a small step of about 0.84 Å between the two molecular planes

Figure 3 Side view of the hydrogen-bonded molecules, showing a step of about 0.84 Å. H atoms have been omitted.

of a centrosymmetric pair. The molecules are stacked in a herring-bone fashion along the *a* axis.

Experimental

Mono-BOC DPP was prepared according to a method described in the literature (Zambounis et al., 1994). The product was purified by column chromatography. Single crystals of mono-BOC DPP were grown from a dichloromethane-ethyl acetate solution.

Crystal data

$C_{23}H_{20}N_2O_4$	$D_x = 1.363 \text{ Mg m}^{-3}$
$M_r = 388.41$	Cu Ka radiation
Monoclinic, $P2_1/n$	Cell parameters from 11787
a = 6.0502 (6) Å	reflections
b = 16.524 (2) Å	$\theta = 3.5-68.1^{\circ}$
c = 19.031 (2) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\beta = 95.744 \ (7)^{\circ}$	T = 93.2 K
$V = 1893.0 (4) \text{ Å}^3$	Needle, orange
Z = 4	$0.50 \times 0.10 \times 0.05 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID imaging plate diffractometer ω scans Absorption correction: multi-scan

(ABSCOR; Higashi, 1995) $T_{\min} = 0.683, \ T_{\max} = 0.962$ 17683 measured reflections

Refinement

F

3 2

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.051$	independent and constrained
$VR(F^2) = 0.141$	refinement
= 1.08	$w = 1/[\sigma^2(F_o^2) + \{0.05[Max(F_o^2, 0) +$
329 reflections	$2F_c^2$]/3} ²]
65 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1				
Selected	geometric parameters	(Å.	°)	

N1-C5	1.395 (3)	C1-C4	1.382 (3)
N1-C6	1.395 (3)	C1-C5	1.455 (3)
N2-C3	1.427 (3)	C2-C3	1.449 (3)
N2-C4	1.404 (3)	C2-C6	1.379 (3)
C1-C2	1.425 (3)		
C5-N1-C6	112.6 (2)	C1-C2-C6	109.5 (2)
C3-N2-C4	112.7 (2)	C3-C2-C6	142.2 (2)
C2-C1-C4	110.1 (2)	N2-C3-C2	103.1 (2)
C2-C1-C5	107.3 (2)	N2-C4-C1	105.7 (2)
C4-C1-C5	142.5 (2)	N1-C5-C1	104.2 (2)
C1-C2-C3	108.3 (2)	N1-C6-C2	106.4 (2)

3329 independent reflections 2370 reflections with $F^2 > 2\sigma(F^2)$

 $R_{\rm int} = 0.052$

 $\theta_{\rm max} = 68.3^{\circ}$

 $h = -6 \rightarrow 6$ $k = -19 \rightarrow 19$

 $l = -22 \rightarrow 22$

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1^i$	0.94 (2)	1.90 (2)	2.821 (2)	166 (2)
8	1 1			

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

The H atom attached to the N atom was located in a difference density map and its coordinates were refined, with $U_{iso}(H) = 1.2U_{eq}(N)$. The remainder of the H atoms were positioned geometrically and included in a riding-model approximation with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2001); program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *TEXSAN*.

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Herbst, W. & Hunger, K. (1993). Industrial Organic Pigments, pp. 550–552. Weinheim: VCH.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- MacLean, E. J., Tremayne, M., Kariuki, B. M., Harris, K. D. M., Iqbal, A. F. M. & Hao, Z. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1513–1519.
- Mizuguchi, J. (2003a). Z. Kristallogr. New Cryst. Struct. 218, 134-136.
- Mizuguchi, J. (2003b). Acta Cryst. E59, 0469-0471.
- Molecular Structure Corporation (2001). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
- Zambounis, J., Hao, H. & Iqbal, A. (1994). US Patent No. 5 484 943.
- Zambounis, J., Hao, H. & Iqbal, A. (1997). Nature (London), 388, 131-132.